Article ID Journal Published Year Pages File Type
1780852 Planetary and Space Science 2016 8 Pages PDF
Abstract
Assuming that the long-wavelength geoid and topography of Venus are supported by both mantle convection and Airy isostasy, we propose a method to separate the dynamic and isostatic components of the Venusian gravity and topography with the aid of the dynamic admittance from numerical models of mantle convection and the isostatic admittance from an Airy isostatic model. The global crustal thickness is then calculated based on the isostatic component of the gravity and topography. The results show that some highland plateaus such as Ishtar Terra and Ovda Regio have thick crust, which are largely supported by isostatic compensation. Other highland plateaus such as Thetis and Phoebe Regiones appear to have superimposed contributions from crustal thickening and dynamic support. Volcanic rises such as Atla and Beta Regiones have thin crust, which is consistent with the postulation that these volcanic rises are mainly the products of dynamic uplift caused by mantle plumes.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
, , ,