Article ID Journal Published Year Pages File Type
1781770 Planetary and Space Science 2010 9 Pages PDF
Abstract

There are observational and theoretical evidences both in favor of and against hydrodynamic escape (HDE) on Titan, and the problem remains unsolved. A test presented here for a static thermosphere does not support HDE on Titan and Triton but favors HDE on Pluto. Cooling of the atmosphere by the HCN rotational lines is limited by rotational relaxation above 1100 km and self-absorption below 900 km on Titan. HDE can affect the structure and composition of the atmosphere and its evolution. Hydrocarbon, nitrile, and ion chemistries are strongly coupled on Titan, and attempts to calculate them separately may result in significant errors. Here we apply our photochemical model of Titan’s atmosphere and ionosphere to the case of no hydrodynamic escape. Our model is still the only after-Cassini self-consistent model of coupled neutral and ion chemistry. The lack of HDE is a distinct possibility, and comparing models with and without HDE is of practical interest. The mean difference between the models and the neutral and ion compositions observed by INMS are somewhat better for the model with HDE. A reaction of NH2 with H2CN suggested by Yelle et al. (2009) reduces but does not remove a significant difference between the ammonia abundances in the models and INMS observations. Losses of methane and nitrogen and production and deposition to the surface of hydrocarbons and nitriles are evaluated in the model, along with lifetimes and evolutionary aspects.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
,