Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1782665 | Planetary and Space Science | 2007 | 9 Pages |
Abstract
In this paper we reply to recent claims by Ciufolini and Pavlis about certain aspects of the measurement of the general relativistic Lense-Thirring effect in the gravitational field of the Earth. (I) The proposal by such authors of using the existing satellites endowed with some active mechanism of compensation of the non-gravitational perturbations as an alternative strategy to improve the currently ongoing Lense-Thirring tests is unfeasible because of the impact of the uncancelled even zonal harmonics of the geopotential and of some time-dependent tidal perturbations. (II) It is shown that their criticisms about the possibility of using the existing altimeter Jason-1 and laser-ranged Ajisai satellites are groundless. (III) Ciufolini and Pavlis also claimed that we would have explicitly proposed to use the mean anomaly of the LAGEOS satellites in order to improve the accuracy of the Lense-Thirring tests. We prove that it is false. In regard to the mean anomaly of the LAGEOS satellites, Ciufolini himself did use such an orbital element in some previously published tests. About the latest test performed with the LAGEOS satellites, (IV) we discuss the cross-coupling between the inclination errors and the first even zonal harmonic as another possible source of systematic error affecting it with an additional 9% bias. (V) Finally, we stress the weak points of the claims about the origin of the two-nodes LAGEOS-LAGEOS II combination used in that test.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geophysics
Authors
L. Iorio,