Article ID Journal Published Year Pages File Type
1782674 Planetary and Space Science 2008 9 Pages PDF
Abstract

A cometary ice analog sample consisting primarily of carbon suboxide ice (C3O2) was produced from the irradiation of its precursor, carbon monoxide. This carbon suboxide sample was subjected to irradiation with energetic electrons at 10 K to simulate the interaction of carbon suboxide-rich cometary analog ices with ionizing radiation. The destruction of carbon suboxide as well as the production of the primary degradation products, dicarbon monoxide (C2O), and carbon monoxide (CO), were monitored quantitatively by infrared spectroscopy in situ; the gas phase was simultaneously sampled via quadrupole mass spectrometry. A kinetic model was produced to help explain the decomposition kinetics of carbon suboxide in cometary ices and to infer the underlying reaction mechanisms.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
, , ,