Article ID Journal Published Year Pages File Type
1782860 Planetary and Space Science 2007 40 Pages PDF
Abstract
Within seconds after landing, the parachute moved into the field of view of one of the spectrometers. The observed light curve indicated a motion of the parachute of 0.3 m/s toward the SSE. DISR images indicated that the probe did not penetrate into the surface, assuming a level ground. This impact of Huygens must have occurred on major rocks or some elevated area. The unexpected raised height increases ice-rock sizes by 40% with respect to estimations made in 2005 [Tomasko, M.G., Archinal, B., Becker, T., Bézard, B., Bushroe, M., Combes, M., Cook, D., Coustenis, A., de Bergh, C., Dafoe, L.E., Doose, L., Douté, S., Eibl, A., Engel, S., Gliem, F., Grieger, B., Holso, K., Howington-Kraus, E., Karkoschka, E., Keller, H.U., Kirk, R., Kramm, R., Küppers, M., Lanagan, P., Lellouch, E., Lemmon, M., Lunine, J., McFarlane, E., Moores, J., Prout, G.M., Rizk, B., Rosiek, M., Rueffer, P., Schröder, S.E., Schmitt, B., See, C., Smith, P., Soderblom, L., Thomas, N., West, R., 2005. Rain, winds and haze during the Huygens probe's descent to Titan's surface. Nature 438, 765-778]. During the 70-min surface phase, the tilt of Huygens was 3∘, changing by a small fraction of a degree. The apparent horizon looking south to SSW from the landing site was 1-2∘ above the theoretical horizon, sloping by 1∘ up to the left (east). Our best guess puts the horizon as a 1-2 m high hill in 30-50 m distance. We detected the refraction from warm, rising air bubbles above our illuminated spot. Bright, elongated, cm-sized objects appear occasionally on the surface. If real, they could be rain drop splashes or fluffy particles blown across Titan's surface.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
, , , , , , ,