Article ID Journal Published Year Pages File Type
1782880 Planetary and Space Science 2007 16 Pages PDF
Abstract

The dynamics of Venus’ mesosphere (70–110 km) is characterized by the superposition of two different wind regimes: (1) Venus’ retrograde superrotation; (2) a sub-solar to anti-solar (SS–AS) flow pattern, driven by solar EUV heating on the sunlit hemisphere. Here, we report on new ground-based velocity measurements in the lower part of the mesosphere. We took advantage of two essentially symmetric Venus elongations in 2001 and 2002 to perform high-resolution Doppler spectroscopy (R=120,000) in 12C16O2 visible lines of the 5ν3 band and in a few solar Fraunhofer lines near 8700 Å. These measurements, mapped over several points on Venus’ illuminated hemisphere, probe the region of cloud tops. More precisely, the solar Fraunhofer lines sample levels a few kilometers below the UV features (i.e. near ∼67 km), while the CO2 lines probe an altitude higher by about 7 km. The wind field over Venus’ disk is retrieved with an rms uncertainty of 15–25 m s−1 on individual measurements. Kinematical fit to a one- or two-component circulation model indicates the dominance of the zonal retrograde flow with a mean equatorial velocity of ∼75 m s−1, exhibiting very strong day-to-day variations (±65 m s−1). Results are very consistent for the two kinds of lines, suggesting a negligible vertical wind shear over 67–74 km. The SS–AS flow is not detected in single-day observations, but combining the results from all data suggests that this component may invade the lower mesosphere with a ∼40 m s−1 velocity.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
, , ,