Article ID Journal Published Year Pages File Type
1783991 Infrared Physics & Technology 2016 27 Pages PDF
Abstract
Human face recognition has been researched for the last three decades. Face recognition with thermal images now attracts significant attention since they can be used in low/none illuminated environment. However, thermal face recognition performance is still insufficient for practical applications. One main reason is that most existing work leverage only single feature to characterize a face in a thermal image. To solve the problem, we propose multi-feature fusion, a technique that combines multiple features in thermal face characterization and recognition. In this work, we designed a systematical way to combine four features, including Local binary pattern, Gabor jet descriptor, Weber local descriptor and Down-sampling feature. Experimental results show that our approach outperforms methods that leverage only a single feature and is robust to noise, occlusion, expression, low resolution and different l1-minimization methods.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Atomic and Molecular Physics, and Optics
Authors
, , , , ,