Article ID Journal Published Year Pages File Type
1784993 Infrared Physics & Technology 2007 6 Pages PDF
Abstract

A non-intrusive approach is investigated to calculate the internal flow distribution in heat exchangers. In particular, the liquid flow rate can be determined in each tube of an air–liquid finned-tube heat exchanger. A purposely designed test bench impresses a sudden change of temperature of the liquid flowing through the heat exchanger. The thermal transient that follows is monitored by a thermographic camera. This measures the rise of surface temperature along each tube. The temperature evolution pattern is then correlated to the flow rate in the tube by simple mathematical processing. The heat exchanger is tested in still air. Modification is not required. The approach is tested on heat exchangers for a F1 race car, with encouraging results.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Atomic and Molecular Physics, and Optics
Authors
, , , , , ,