Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1789646 | Journal of Crystal Growth | 2016 | 10 Pages |
•Growth temperature permits to switch from individual crystals to suspended films.•A continuum model including both deposition and surface diffusion is discussed.•The activation of surface diffusion plays the major role in the merging process.
A method for growing suspended Ge films on micron-sized Si pillars in Si(001) is discussed. In [C.V. Falub et al., Science 335 (2012) 1330] vertically aligned three-dimensional Ge crystals, separated by a few tens of nanometers, were obtained by depositing several micrometers of Ge using Low-Energy Plasma-Enhanced Chemical Vapor Deposition. Here a different regime of high growth temperature is exploited in order to induce the merging of the crystals into a connected structure eventually forming a continuous, two-dimensional film. The mechanisms leading to such a behavior are discussed with the aid of an effective model of crystal growth. Both the effects of deposition and curvature-driven surface diffusion are considered to reproduce the main features of coalescence. The key enabling role of high temperature is identified with the activation of the diffusion process on a time scale competitive with the deposition rate. We demonstrate the versatility of the deposition process, which allows to switch between the formation of individual crystals and a continuous suspended film simply by tuning the growth temperature.