Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1792972 | Journal of Crystal Growth | 2010 | 5 Pages |
Abstract
Orthorhombic Fe5(PO4)4(OH)3·2H2O single crystalline dendritic nanostructures have been synthesized by a facile and reproducible hydrothermal method without the aid of any surfactants. The influences of synthetic parameters, such as reaction time, temperature, the amount of H2O2 solution, pH values, and types of iron precursors, on the crystal structures and morphologies of the resulting products have been investigated. The formation process of Fe5(PO4)4(OH)3·2H2O dendritic nanostructures is time dependent: amorphous FePO4·nH2O nanoparticles are formed firstly, and then Fe5(PO4)4(OH)3·2H2O dendrites are assembled via a crystallization-orientation attachment process, accompanying a color change from yellow to green. The shapes and sizes of Fe5(PO4)4(OH)3·2H2O products can be controlled by adjusting the amount of H2O2 solution, pH values, and types of iron precursors in the reaction system.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Guicun Li, Shuai Zhang, Hongrui Peng, Kezheng Chen,