Article ID Journal Published Year Pages File Type
1793195 Journal of Crystal Growth 2010 4 Pages PDF
Abstract
In this paper, Monte Carlo simulations are carried out for Zn cluster supported on a static Si (0 0 1) substrate to estimate the morphological evolution of self-catalysis growth of ZnO nanostructures. The tight-binding many-body potential and the Lennard-Jones potential are used to describe Zn-Zn and Zn-Si interactions, respectively. The dynamic processes of Zn cluster in the temperature field decomposing and wetting effects are visualized through the simulation. The Zn atomic aggregates that randomly disperse on the Si (0 0 1) substrate with different shapes, such as a dimer, trimer, multimer and atomic chain, would act as catalytic nucleation sites for the following growth of the ZnO nanostructure. This phenomenon provides a sound explanation for the formation of randomly orientated and diversified ZnO nanostructures on the Si (0 0 1) substrate.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,