Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1793693 | Journal of Crystal Growth | 2009 | 5 Pages |
Y2O3:Eu luminescent nanoparticles were prepared by solvothermal route under supercritical conditions (350–400 °C) using aqueous yttrium chloride/europium chloride solution, methanol, NaOH aqueous solution, urea, 1-octadecene and oleic acid followed by calcination at 800 and 1000 °C. The particles exhibited sphere and rod-shaped morphology with diameter size ranging 20–40 nm. The samples before calcinations showed broad X-ray diffraction (XRD) peaks corresponding to YOCl, Y2(CO3)3·2H2O and Y2O3 and were converted to single-phase Y2O3 after calcinations above 800 °C. The Y2O3:Eu nanoparticles with sphere morphology exhibited stronger luminescence intensity than rod-shaped particles. The result was compared with reference sample prepared via conventional co-precipitation–calcination method.