Article ID Journal Published Year Pages File Type
1794087 Journal of Crystal Growth 2009 5 Pages PDF
Abstract

A systematic study of the crystallographic and electrical/optical properties of MOVPE-grown InN was performed, and the factors that restrict the quality of MOVPE InN were elucidated. The quality of grown InN is highly dependant on the thermal decomposition of NH3 as a nitrogen source. At a lower growth temperature (~550 °C) a shortage of active nitrogen, due to a lower decomposition rate of NH3, causes the formation of N vacancies in the grown InN. With increasing growth temperature, a more stoichiometric crystal is grown and the electrical/optical properties improve. At temperatures above 600 °C, however, deterioration occurs at the N-face of In-polar InN near the substrate interface. This deterioration results in the formation of a porous layer during high temperature (~650 °C) growth. There are a few evidences that show that the hydrogen produced by NH3 decomposition causes this degradation. Thus, improving the quality of MOVPE-grown InN by changing the growth temperature can be difficult. However, a short growth time at a high growth rate and a relatively high temperature is one effective way to solve this dilemma, and one can achieve carrier concentrations as low as 4×1018 cm−3 by growth at 650 °C for 30 min.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,