Article ID Journal Published Year Pages File Type
1794312 Journal of Crystal Growth 2008 6 Pages PDF
Abstract

We study the nucleation and growth kinetics on the Ge(0 0 1) surface at elevated temperatures using in situ surface X-ray diffraction. The time evolution of characteristic length scales on the surface is analyzed through the widths of the different components of the integer-order (morphology sensitive) and fractional-order (reconstruction sensitive) diffraction peaks. We find an activation energy of 0.58 eV for Ge island nucleation during homoepitaxy, which implies a diffusion activation energy higher than that obtained for both adatom and dimer diffusion on Ge(0 0 1) in previous studies. Sub-monolayer homoepitaxial Ge islands coarsen according to a power law, with a relatively low time exponent of n=0.2. The coarsening of small 2×1 reconstruction domains on a flat surface prepared by deposition of an integer number of layers shows a strong temperature dependence, whereby the coarsening exponent decreases from 0.41 to 0.2 as the temperature is increased.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,