Article ID Journal Published Year Pages File Type
1794853 Journal of Crystal Growth 2009 4 Pages PDF
Abstract

Selective-area growth (SAG) of InGaN/GaN multiple quantum wells (MQWs) was performed by metalorganic vapor phase epitaxy (MOVPE). The layers of a blue light-emitting diode (LED), that includes five InGaN quantum wells, were grown on a patterned GaN template on a sapphire substrate. In order to elucidate the contribution of vapor-phase diffusion of group-III precursors to the in-plane modulation of luminescence wavelength, the width of a stripe selective growth area was 60 μm that is sufficiently larger than the typical surface diffusion length, with the mask width varied stepwise between 30 and 240 μm. The distribution of the luminescence wavelength from the MQWs was measured with cathode luminescence (CL) across the stripe growth area. The peak wavelength ranged between 420 and 500 nm. The peak shifted to longer wavelengths and became broader as the measured point approached to the mask edge. Such a shift in the peak wavelength exhibited parabolic profile in the growth area and the wider mask shifted the entire peak positions to longer wavelengths. These trends clearly indicate that the vapor-phase diffusion play a dominant role in the in-plane modulation of the luminescence wavelength in the SA-MOVPE of InGaN MQWs, when the size of a growth area and/or the mask width exceeds approximately 10 μm.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , ,