Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1795966 | Journal of Crystal Growth | 2007 | 6 Pages |
Abstract
Undoped and boron-doped homoepitaxial diamond films with high quality have been successfully grown on high-pressure/high-temperature-synthesized type-Ib single-crystalline diamond (1 0 0) substrates. In the growth process, a conventional microwave-plasma (MWP) chemical-vapor-deposition (CVD) system with an easily-exchangeable 36-mm-inner-diameter quartz-tube growth chamber was employed under a condition of high MW power densities while a rather high methane concentration (4%) and high substrate temperatures (>1000 °C) were used. The growth conditions applied to the undoped and B-doped diamond thin films were separately optimized by controlling the MW plasma density and substrate temperatures. The homoepitaxial films thus grown yielded strong exciton-related luminescence even at room temperature, meaning that their crystalline quality was good and roughly comparable with that of homoepitaxial films deposited using a high-power MWPCVD system with a stainless steel chamber having a rather large diameter. This indicates that by using such a conventional deposition system with inexpensive and easily-exchangeable exclusive-use quartz-tube chambers, various growth experiments can be performed under different process conditions without any severe interference among the different experiments.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Takahiro Nakai, Kazuya Arima, Osamu Maida, Toshimichi Ito,