Article ID Journal Published Year Pages File Type
1796044 Journal of Crystal Growth 2006 7 Pages PDF
Abstract

The effect of thermoelectromagnetic convection (TEMC) was investigated in the system germanium–silicon, grown by the vertical Bridgman method under axial static magnetic fields of up to 5 T. TEMC is generated, if thermocurrents, caused by concentration and/or temperature gradients, are running non-parallel to magnetic field lines. Under the influence of strong axial magnetic fields, the macrosegregation along the growth axis changed from a profile typical for normal freezing toward a concentration profile described by diffusive mass transport. At the same time, the segregation pattern on the microscale (i.e. the non-steady distribution of the silicon incorporation perpendicular to the growth axis) changed significantly. Without magnetic field, no evidence of short-range compositional fluctuations has been detected. Growth under static magnetic fields of B⩾0.5T and B⩽4T resulted in strong microsegregation. These compositional fluctuations are in the range of a few micrometers up to several hundred micrometers. The strength increased with the field strength and reached a maximum at a magnetic induction of 2 T. These magnetic field induced inhomogeneities are damped with higher magnetic fields and can nearly be eliminated with a magnetic field of 5 T. Due to their coupling to the static magnetic field and their specific shape, they can be attributed to TEMC.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,