Article ID Journal Published Year Pages File Type
1796194 Journal of Crystal Growth 2006 5 Pages PDF
Abstract

We have performed systematic studies of the effects of high-energy particle irradiation on the properties of InGaN alloys. In agreement with the amphoteric defect model, irradiation of InN produces donor-like defects. The electron concentration increases with increasing radiation dose and saturates at 4×1020 cm−3 at very high doses. We find that the increase of the electron concentration causes a large blue-shift of the absorption edge, which is well explained by the Burstein–Moss effect. The maximum electron concentration decreases with increasing Ga fraction in irradiated In1−xGaxN alloys as the conduction band edge approaches the Fermi level stabilization energy (EFS). For x>0.66x>0.66 the conduction band edge moves above EFS and the irradiation of n-type films produces acceptor-like defects, resulting in a reduced free electron concentration. An analysis of the concentration dependence of the electron mobility in InN indicates that the dominant defects in irradiated InN are triply charged donors. Finally, we show that InN films doped with Mg acceptors behave like undoped films above a threshold radiation dose.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , , ,