Article ID Journal Published Year Pages File Type
1796398 Journal of Crystal Growth 2006 5 Pages PDF
Abstract

The design and performance of single-mode high-power (>100 mW) semiconductor lasers suitable for integration into large arrays are reported. In 830 nm lasers, quantum well intermixing (QWI) has been used to increase the bandgap of the waveguide in the facet region by 120 meV, and the catastrophic optical damage threshold of uncoated devices increased by a factor of >3 as a result. The passive waveguides are relatively cool, bringing high reliability, improving the single-mode waveguide stability and enabling high-temperature operation. Furthermore, the passive waveguides relax the cleaving and packaging alignment tolerances, giving a high yield process suitable for manufacture. A far-field reduction layer is included in the lasers giving a fast axis divergence of <20° FWHM. Arrays in which each emitter operates at several 100 mW, have excellent uniformity of laser parameters such as kink power, operating power and optical beam profile.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
,