Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1796975 | Journal of Crystal Growth | 2006 | 5 Pages |
Uniform, submicron BaTiO3 crystallites in tetragonal structure were synthesized by a novel low-temperature liquid–solid reaction method mainly via two simple steps: firstly, BaO2·H2O2 submicron particles of about 130–450 nm were precipitated from the reaction of BaCl2 and H2O2 in a slightly alkaline (pH 8) aqueous solution under the ambient condition; secondly, tetragonal phase BaTiO3 submicrocrystals with the size in the range of 180 to 400 nm could be produced by subjecting the as-prepared BaO2·H2O2 and commercial TiO2 submicron particles to thermal treatment in air at 700 °C for 10 h. The as-obtained products were characterized by X-ray powder diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and inductively coupled plasma-atomic emission spectroscopy, and scanning electron microscopy.