Article ID Journal Published Year Pages File Type
1797749 Journal of Magnetism and Magnetic Materials 2016 4 Pages PDF
Abstract

Half-metallic magnets with complete (100%) spin polarization have attracted growing interest due to the potential in spintronic applications. In this paper, we use the first-principles calculations to explain the seeming contradiction between the recent experimental ferromagnetism (Demper et al., 2012 [22]) and the previous theoretical antiferromagnetic ground state for half-metallic zinc-blende CrS, and the experimental ferromagnetism of zinc-blende CrS arises from the substrate effect. We also show that both Cr- and S-terminated (001) surfaces of CrS preserve the bulk half-metallicity. The calculated surface energy indicates that the S-terminated (001) surface is more stable than the Cr-terminated (001) surface within the whole effective Cr chemical potentials, and thus the S-terminated (001) surface is more likely than the Cr-terminated (001) surface when the CrS thin films are grown on ZnSe substrate.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, ,