Article ID Journal Published Year Pages File Type
1797834 Journal of Magnetism and Magnetic Materials 2016 5 Pages PDF
Abstract

Bloch-surface-wave (BSW) excitation controlled by Faraday rotation in one-dimensional magnetophotonic crystals is presented. Dispersion curves of the Bloch surface wave and waveguide modes of magnetophotonic crystals consisting of silicon dioxide and bismuth-substituted yttrium-iron-garnet (Bi:YIG) quarter-wavelength-thick layers are calculated using Berreman's 4×4 transfer matrix method. Enhanced Faraday rotation observed in the magnetophotonic crystals in the spectral vicinity of the BSW resonance enables the magneto-optical switching of BSWs. The excitation of the BSWs at the magnetophotonic crystal surface for p-polarized incident light is induced by magneto-optical activity in the Bi:YIG layers.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,