Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1797963 | Journal of Magnetism and Magnetic Materials | 2016 | 26 Pages |
Abstract
The effects of elemental addition, C and Ce, on the microstructure, thermal property and magnetic property of mechanically alloyed FeSiBAlNi (based-W5) high entropy alloys (HEAs) have been investigated in depth in the present work. The amorphous HEAs have been successfully fabricated by mechanical alloying. The results reveal that Ce addition obviously shortens the formation time of fully amorphous phase, therefore leading to the enhanced glass forming ability (GFA) of the based-W5. The final products of as-milled FeSiBAlNiC alloy consist of the main amorphous phase and a small amount of Si nanocrystals. In addition, C and Ce addition are both beneficial to enhance the thermal stability. The coercivity force (Hc) of the tested samples lies in the range of 50-378Â Oe, suggesting the semi-hard magnetic property. The saturation magnetization (Ms) becomes decreased with increasing the milling time. C addition effectively increases Ms exhibiting the good magnetic property, however, Ce addition presents the negative effect. It should be noted that the amorphous phase tends to be formed when the radius ratio (Rr) is larger than 1, and the GFA is enhanced with increasing Rr and valence electron concentration.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Jing Xu, Eugen Axinte, Zhengfeng Zhao, Yan Wang,