Article ID Journal Published Year Pages File Type
1799277 Journal of Magnetism and Magnetic Materials 2015 6 Pages PDF
Abstract
In this paper, we study the electronic structures, magnetic properties, and half-metallicity of the bulk and (001) surface of Heusler alloy NiCoMnGa. Our first-principles calculations exhibit that, within the generalized gradient approximation (GGA) of the electronic exchange-correlation functional, the quaternary Heusler alloy NiCoMnGa is a half-metallic ferromagnet at the equilibrium lattice constant of 5.795 Ǻ with a total spin magnetic moment of 5 μB per formula unit. The calculated total atomic magnetic moment follows the Slater-Pauling rule. At the same equilibrium lattice constant, the half-metallicity confirmed in the bulk NiCoMnGa, is destroyed at both MnGa- and NiCo-terminated (001) surfaces and subsurfaces. Based on the magnetic property calculations, the magnetic moments of Co, Mn, and Ga atoms at the NiCo- and MnGa-terminated surfaces increase with respect to the corresponding bulk values while the atomic magnetic moment of Ni at the NiCo-terminated surface decreases.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,