Article ID Journal Published Year Pages File Type
1799396 Journal of Magnetism and Magnetic Materials 2015 6 Pages PDF
Abstract

•A facile synthesis of two kinds of monodisperse iron oxide nano-particle clusters was performed via a modified one-step solvothermal method in this work.•The NaCit and PVP as different guiding agents are used to control the formation and aggregation of nano-crystals during reacting and the ripening processes.•The superparamagnetic NaCit–Fe3O4 samples have high saturation magnetization (Ms) of 69.641 emu/g and low retentivity (Mr) of 0.8 emu/g.•The relevant formation mechanisms of the two types of samples are proposed.

A series of magnetic iron oxide nanoparticle clusters with different structure guide agents were synthesized by a modified solvothermal method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analyses (TG), a vibrating sample magnetometer (VSM) and Fourier transform infrared spectroscopy (FTIR). It is found that the superparamagnetic nanoparticles guided by NaCit (sodium citrate) have high saturation magnetization (Ms) of 69.641 emu/g and low retentivity (Mr) of 0.8 emu/g. Guiding to form superparamagnetic clusters with size range of 80–110 nm, the adherent small-molecule citrate groups on the surface prevent the prefabricated ferrite crystals growing further. In contrast, the primary small crystal guided and stabilized by the PVP long-chain molecules assemble freely to larger ones and stop growing in size range of 100–150 nm, which has saturation magnetization (Ms) of 97.979 emu/g and retentivity (Mr) of 46.323 emu/g. The relevant formation mechanisms of the two types of samples are proposed at the end. The superparamagnetic ferrite clusters guided by sodium citrate are expected to be used for movement controlling of passive interference particles to avoid aggregation and the sample guided by PVP will be a candidate of nanometer wave absorbing material.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,