Article ID Journal Published Year Pages File Type
1799577 Journal of Magnetism and Magnetic Materials 2015 5 Pages PDF
Abstract
The results of investigations of the magnetic properties of Fe implanted barium titanate (BaTiO3) perovskite crystal are presented. It has been revealed that the implantation with Fe+ ions at a fluence of 0.75×1017 ions/cm2 results in the formation of iron nanoparticles with mean size of 5 nm in the implanted surface layer of BaTiO3 substrate. Room temperature magnetic resonance measurements have shown Electron Paramagnetic Resonance (EPR) spectra originated from Fe3+ ions in the BaTiO3 substrate, as well as ferromagnetic resonance (FMR) spectrum from the Fe-implanted surface layer, exhibiting the out-of-plane uniaxial magnetic anisotropy. On the other hand, Vibrating Sample Magnetometer (VSM) measurements of the static magnetization have shown that the composite Fe:BaTiO3 system displays superparamagnetic response at room temperature, and evident ferromagnetic behavior with an easy-plane magnetic anisotropy at temperature below 100 K. The observed magnetic anisotropy is discussed on a model of strong magnetic dipolar interaction between superparamagnetic nanoparticles of iron within the granular composite film formed in a result of the high-fluence implantation.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , , , ,