Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1800300 | Journal of Magnetism and Magnetic Materials | 2013 | 12 Pages |
Cobalt ferrite nanoparticles are of interest because of their room temperature coercivity and high magnetic anisotropy constant, which make them attractive in applications such as sensors based on the Brownian relaxation mechanism and probes to determine the mechanical properties of complex fluids at the nanoscale. These nanoparticles can be synthesized with a narrow size distribution by the thermal decomposition of an iron–cobalt oleate precursor in a high boiling point solvent. We studied the influence of aging time of the iron–cobalt oleate precursor on the structure, chemical composition, size, and magnetic relaxation of cobalt ferrite nanoparticles synthesized by the thermal decomposition method. The structure and thermal behavior of the iron–cobalt oleate was studied during the aging process. Infrared spectra indicated a shift in the coordination state of the oleate and iron/cobalt ions from bidentate to bridging coordination. Aging seemed to influence the thermal decomposition of the iron–cobalt oleate as determined from thermogravimmetric analysis and differential scanning calorimetry, where shifts in the temperatures corresponding to decomposition events and a narrowing of the endotherms associated with these events were observed. Aging promoted formation of the spinel crystal structure, as determined from X-ray diffraction, and influenced the nanoparticle magnetic properties, resulting in an increase in blocking temperature and magnetocrystalline anisotropy. Mossbauer spectra also indicated changes in the magnetic properties resulting from aging of the precursor oleate. Although all samples exhibited some degree of Brownian relaxation, as determined from complex susceptibility measurements in a liquid medium, aging of the iron–cobalt oleate precursor resulted in crossing of the in-phase χ′and out-of-phase χ″ components of the complex susceptibility at the frequency of the Brownian magnetic relaxation peak, as expected for nanoparticles that relax through a single relaxation mechanism. The resulting nanoparticles would be suitable for sensors based on the Brownian relaxation mechanism and in determining mechanical properties of complex fluids at the size scale of the nanoparticles.
Graphical AbstractThe aging time of the oleate precursor influenced the crystal structure, size, magnetic properties, and AC susceptibility of cobalt ferrite nanoparticles synthesized by the thermal decomposition method, resulting in crossing of the in-phase χ′ and out-of-phase χ″ components of the complex susceptibility, an attribute of a collection of nanoparticles with a single dominant magnetic relaxation mechanism.Figure optionsDownload full-size imageDownload as PowerPoint slideHighlights► Effect of aging of an iron–cobalt oleate precursor on properties of CoFe2O4 nanoparticles was evaluated. ► Aging of the iron–cobalt oleate resulted in changes in its thermo physical properties. ► Nanoparticles obtained with precursor aged for 2 days showed evidence of an impurity phase. ► Aging for 15–30 days resulted in nanoparticles with predominantly Brownian magnetic relaxation.