Article ID Journal Published Year Pages File Type
1801228 Journal of Magnetism and Magnetic Materials 2010 4 Pages PDF
Abstract

The magnetic FeCoNd films with thickness (t) from 50 to 166 nm were fabricated by RF magnetron co-sputtering at ambient condition. The amorphous structures of all of the films were investigated by X-ray diffraction and transmission electron microscopy. A spin reorientation transition from in-plane single domain state to out-of-plane stripe domain state was observed as a function of t. When t is below a critical thickness, magnetic moments lie in the film plane corresponding to in-plane single domain state because of the strong demagnetization energy. However, when t is increased, out-of-plane stripe domain structure was developed due to a dominated perpendicular magnetic anisotropy. Scanning electron microscopy data indicate that the perpendicular anisotropy, which is responsible for the formation of stripe domains, may result from the shape effect of the columnar growth of the FeCo grains.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,