Article ID Journal Published Year Pages File Type
1801335 Journal of Magnetism and Magnetic Materials 2011 4 Pages PDF
Abstract

In the paper Ab initio electronic structure calculations are applied to study the electronic structure and magnetism properties of a new Mn-based Heusler alloy Mn2CuMg. We take into account both possible L 21 structures (CuHg2Ti and AlCu2Mn types). The CuHg2Ti-type structure is found to be energetically more favorable than the AlCu2Mn-type structure and presents half-metallic ferrimagnetism. However, the case of exchanging X with Y atoms in generic formula loses its half-metallicity due to the symmetric surroundings. Calculations show that their total spin moment is −1μB−1μB for a wide range of equilibrium lattice constants and the total spin magnetic moment is attributed mainly to the two Mn atoms, while the Cu atom is almost non-magnetic. A small total spin moment origins from the antiparallel configurations of the Mn partial moments. The CuHg2Ti-type Mn2CuMg alloy keeps a 100% of spin polarization of conduction electrons at the Fermi level, thus opening the way to engineer new half-metallic alloys with the desired magnetic properties.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,