Article ID Journal Published Year Pages File Type
1801492 Journal of Magnetism and Magnetic Materials 2010 4 Pages PDF
Abstract

Magneto-optic Kerr effect (MOKE) and magnetoresistance (MR) measurements were used to measure the switching characteristics of spin-valve (SV) arrays currently being developed to trap and release superparamagnetic beads within a fluid medium. The effect of SV size on switching observed by MOKE showed that a 1 μm×8 μm SV element was found to have optimal switching characteristics. MR measurements on a single 1 μm×8 μm SV switched with either an external applied magnetic field or a local magnetic field generated by an integrated write wire (current density ranging from 106 to 107 A/cm2) confirmed the MOKE findings. The 1 μm×8 μm SV low field switching was observed to be +8 and −2 mT with two stable states at zero field; the high field switching was observed to be −18 mT. The low switching fields and the large magnetic moment of the SV trap along with our observation of minimal magnetostatic effects for dense arrays are necessary design characteristics for high-force, “switchable-magnet,” microfluidic bead trap applications.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,