Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1801832 | Journal of Magnetism and Magnetic Materials | 2010 | 11 Pages |
All electron full potential calculations based on spin density functional theory are performed to study cubic zincblende (ZB) and hexagonal NiAs structures of bulk CrTe, free (0 0 1) surfaces of ZB CrTe, and interface of ZB CrTe with ZnTe(0 0 1). The ferromagnetic NiAs structure is reported to be about 0.26 eV more stable than the ferromagnetic ZB phase while ZB CrTe is found to be a half-metallic ferromagnet with a half-metallic gap of about 2.90 eV. Thermodynamic stability of CrTe(0 0 1) surfaces are studied in the framework of ab-initio thermodynamic. The obtained phase diagram evidences more stability of the Te terminated surface compared with the Cr termination. We discuss that both Te and Cr ideal terminations of CrTe(0 0 1) retain bulk-like half-metallic property but with a reduced half-metallic gap compared with bulk value. The structural, electronic, magnetic, and band alignment properties of the ZB CrTe/ZnTe(0 0 1) interface are computed and a rather large minority valence band offset of about 1.09 eV is observed in this heterojunction.