Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1801983 | Journal of Magnetism and Magnetic Materials | 2010 | 5 Pages |
The magnetic layer structure of TlCo2Se2−xSx has been thoroughly re-investigated with neutron powder diffraction. The cobalt magnetic moments are ferromagnetically arranged within the layers, but the interlayer coupling differs profoundly with varying composition (x): the spins in TlCo2Se2 form a helix along the c-axis with a turning-angle of ∼119° at 1.4 K. This kind of helical structure prevails for 0≤x≤1.5 with a gradual decrease of the angle with increasing sulphur content, down to 34°, showing an almost linear relationship with the interlayer distance of Co–Co. For x≥1.75 the interlayer coupling changes to ferromagnetic. Unexpectedly, two helices were found to coexist at x=0.5 and x=1.0. The interaction between adjacent cobalt layers is there characterized by an incommensurate angle (106°, resp., 73°) together with a commensurate angle of 90°. The magnetic structures have been refined as two magnetic phases, each having a characteristic wave vector. A tentative model where the symmetry of the structure and the interlayer distance compete is considered for explaining the simultaneous occurrence of the two kinds of diffraction profile satellites.