Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1802258 | Journal of Magnetism and Magnetic Materials | 2007 | 7 Pages |
Systematic study was devoted to the synthesis of hexagonal strontium ferrite nanoparticles employing polyvinylalcohol as stabilizing agent. Preliminary experiments allowed to select an optimal sol having molar ratio Sr2+/Fe3+=12Sr2+/Fe3+=12, weight ratio PVA/[Sr2++Fe3+]=1.4PVA/[Sr2++Fe3+]=1.4 and pH=2.1pH=2.1. The obtained sol were transformed to gels by an evaporation of water at 100 °C and drying at 112 °C under vacuum. The subsequent calcination was carried out for 3 h at 400 °C, achieved by heating rate of 17 K/min. The obtained precursor was used for a detail study of influence of annealing conditions (temperature range 600–700 °C, annealing time 10–190 min) on the resulting properties. Semiquantitative X-ray phase analysis approved a gradual increase of the M-phase content and a gradual growth of M-phase crystallites with temperature and time. Magnetic measurements showed a distinct influence of the phase composition, namely ratio of the contents of M-phase and maghemite on the shape of the magnetic loops, while the crystallite sizes have only a slight effect.