Article ID Journal Published Year Pages File Type
1802406 Journal of Magnetism and Magnetic Materials 2008 5 Pages PDF
Abstract

(Fe48Pt52)100−x–(MgO)x films were used to examine the performance of a perpendicular percolated medium. Two underlayers, Pt(0 0 1)/Cr(0 0 2) and MgO(0 0 2), were used for comparison. The (Fe48Pt52)100−x–(MgO)x film with the MgO underlayer exhibits a strong preference to segregate at FePt grain boundaries. The microstructure with small closely packed MgO particles (2–4 nm) dispersed uniformly in the L10 FePt matrix was achieved in the Pt/Cr underlayered sample. Structural data reveal that the precipitate is crystallographically coherent with the surrounding L10 FePt phase and preserves good lattice alignment. Magnetic results indicate significant pinning behavior for those introduced non-magnetic columns with an enhanced coercivity of about 70%—much greater than that of the MgO underlayered samples. Percolated perpendicular medium can be realized in the FePt system and a Pt(0 0 1)/Cr(0 0 2) underlayer promotes the formation of pinning sites within the FePt grains.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , ,