Article ID Journal Published Year Pages File Type
1802478 Journal of Magnetism and Magnetic Materials 2009 4 Pages PDF
Abstract

A microfabricated magnetic sifter has been designed and fabricated for applications in biological sample preparation. The device enables high-throughput, high-gradient magnetic separation of magnetic nanoparticles by utilizing columnar fluid flow through a dense array (∼5000/mm2) of micropatterned slots in a magnetically soft membrane. The potential of the sifter for separation of magnetic nanoparticles conjugated with capture antibodies is demonstrated through quantitative separation experiments with CD138-labeled MACS nanoparticles. Capture efficiencies ranging from 28% to 37% and elution efficiencies greater than 73% were measured for a single pass through the sifter.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , ,