Article ID Journal Published Year Pages File Type
1802629 Journal of Magnetism and Magnetic Materials 2006 7 Pages PDF
Abstract

In perpendicular recording system, the increase of track density is crucial to achieve ultrahigh areal density. At higher track densities, the adjacent-track interference (ATI) arises. In this work, ATI is studied by micromagnetic simulation. Two adjacent tracks are written successively. The track–track distance (TTD) and head–medium spacing are varied to analyze the write and read performance of these two tracks and to investigate the influence of ATI on recording performance. Simulation results indicate that when a track is written first, it is less vulnerable to ATI. ATI is stronger in a track with higher linear recording density. The head–medium spacing plays a significant role in the achievement of low ATI in perpendicular recording system. If the head–medium spacing is reduced to 5 nm, areal recording density above 540 Gb/in2 could be realized.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,