Article ID Journal Published Year Pages File Type
1802747 Journal of Magnetism and Magnetic Materials 2009 5 Pages PDF
Abstract

We investigate the influence of damping constant on the dynamics process of the magnetic vortex in submicron-size permalloy disks by micromagnetic simulations and analytical calculations. Both of them reveal that damping constant influences the trajectory of vortex core gyrotropic motion strongly. Comparing with the case of no damping constant, the steady-state trajectory of vortex core motion becomes ellipse as the amplitude of the oscillating magnetic filed is small. The ellipse becomes more slab-sided and tilting with increasing of damping constant, and the tilting direction is also dependent on the vortex core polarization. As the amplitude of the magnetic field increases to a value, the polarization of the vortex core will reverse and a new vortex with opposite polarization will be produced. With increasing of damping constant, the minimum oscillating magnetic field amplitude HS0 that can reverse the polarization of the vortex core increases proportionally.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, ,