Article ID Journal Published Year Pages File Type
1802823 Journal of Magnetism and Magnetic Materials 2009 4 Pages PDF
Abstract
We have synthesized thin films of disordered zinc ferrite (ZnFe2O4) and ilmenite-hematite (FeTiO3-Fe2O3) solid solution, the former and the latter of which are interesting from the viewpoints of magnetooptics and spintronics, respectively, by utilizing sputtering and pulsed laser deposition methods, and have explored their magnetic, magnetooptical, and electrical properties. Although ZnFe2O4 possesses a normal spinel structure as its stable phase, some of the Fe3+ ions occupy the tetrahedral as well as the octahedral sites in ZnFe2O4 of which the sputtered thin film is composed. Consequently, the as-deposited thin film manifests large magnetization even at room temperature although the magnetic phase transition temperature of the stable phase of ZnFe2O4 is as low as 10 K. Also, the thin film exhibits a cluster spin glass transition at a temperature as high as 325 K. Furthermore, the ZnFe2O4 thin films exhibit large Faraday effects at a wavelength of 400 nm or so. The ilmenite-hematite solid solution is one of the ferrimagnetic semiconductors. Most of the compositions possess Curie temperatures higher than room temperature, and the type of carrier can be tuned only by changing the composition. We have succeeded in synthesizing solid-solution thin films of various compositions grown epitaxially on sapphire substrates with a (0 0 0 1) plane, and have shown that the thin films are ferrimagnetic semiconductors.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , ,