Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1802883 | Journal of Magnetism and Magnetic Materials | 2006 | 4 Pages |
Silica-coated cobalt nanoparticles were found to organize into chains when driven by a weak external magnetic field. Strong dipole–dipole magnetic interactions are believed to be the driving force of the self-organization once the cobalt nanoparticles undergo the superparamagnetic to ferromagnetic (SP–FM) transition, as increasing their size during the synthesis process. The method, although simple, produces structures resembling pearl necklace-like structures, comparable to one-dimensional species obtained in more laborious processes. Molecular dynamic simulations taking magnetic dipolar forces into account reproduce the observed self-assembled structures. The nanoscale engineering of this type of colloids is expected to extend the spectrum of magnetic effects and functionalities.