Article ID Journal Published Year Pages File Type
1802913 Journal of Magnetism and Magnetic Materials 2009 5 Pages PDF
Abstract

We present a fully ab initio ultrafast magnetooptical-switching mechanism in NiO. After obtaining all intragap d-character states of the bulk and the (001) surface with the use of highly correlational quantum chemistry we propagate in time under the influence of a static magnetic field and a laser pulse. We find that switching can be best achieved in a subpicosecond regime with linearly polarized light. The electric-dipole approximation suffices for the surface, however, for the centrosymmetric bulk the presence of an optical phonon is used as a symmetry-lowering mechanism. Lattice (contrary to electronic) temperature is found to enhance the process.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, ,