Article ID Journal Published Year Pages File Type
1803163 Journal of Magnetism and Magnetic Materials 2009 10 Pages PDF
Abstract

The fundamental limit of magnetic recording density on conventional media is set by the grain size. Once this grain size limit is reached, only a reduction of the grain size allows an increased SNR and thus an increased areal density. It is shown that, whilst maintaining thermal stability, scaling demands that the required anisotropy energy density K   is proportional to the areal density, or the square of the areal density if the medium thickness reaches the critical thickness 4A/K (A is the exchange stiffness of the material). Recording onto materials with such a high anisotropy requires some form of a write-assist. It is furthermore shown that the grain size limit cannot be obtained with intergranular exchange present, and six different requirements are listed that constitute ideal media. An alternative path for increasing areal density of magnetic recording is to use patterned media, where each bit contains only one grain. In this case, written-in errors dominate system performance and the maximum achievable areal density is estimated to be about 6 Tbit/in2. Patterned media need to exhibit narrow distributions of their physical and structural properties with standard deviations of the order of 5% or less.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
,