Article ID Journal Published Year Pages File Type
1803233 Journal of Magnetism and Magnetic Materials 2009 4 Pages PDF
Abstract
We investigate the dynamic hysteresis of nanoscale magnetic aggregates by employing Monte Carlo simulation, based on Ising model in non-integer dimensional space. The diffusion-limited aggregation (DLA) model with adjustable sticking probability is used to generate magnetic aggregates with different fractal dimension D. It is revealed that the exponential scaling law A(H0, ω)∼H0α·ωβ, where A is the hysteresis area, H0 and ω the amplitude and frequency of external magnetic field, applies to both the low-ω and high-ω regimes, while exponents α and β decrease with increasing D in the low-ω regime and keep invariant in the high-ω regime. A mean-field approach is developed to explain the simulated results.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , ,