Article ID Journal Published Year Pages File Type
1803264 Journal of Magnetism and Magnetic Materials 2008 7 Pages PDF
Abstract

Fe3O4–polylactide (PLA) core–shell nanoparticles were perpared by surface functionalization of Fe3O4 nanoparticles and subsequent surface-initiated ring-opening polymerization of l-lactide. PLA was directly connected onto the magnetic nanoparticles surface through a chemical linkage. Fourier transform infrared (FT-IR) spectra directly provided evidence of the PLA on the surface of the magnetic nanoparticles. Transmission electron microscopy images (TEM) showed that the magnetic nanoparticles were coated by PLA with a 3-nm-thick shell. The amount of grafted polymer determined by thermal gravimetric analysis was ∼13.3% by weight. X-ray diffraction (XRD) patterns of as-prepared core–shell nanoparticles showed the same structure (spinel cubic lattice type) to that of the bare core materials with similar intensity of the corresponding peaks, and that the polymer coating was amorphous. The particles could be stably dispersed in chloroform for several weeks. The prepared Fe3O4–PLA core–shell nanoparticles were superparamagnetic behavior with a saturation magnetization value nearly identical to that of the bare magnetic nanoparticles, rendering the Fe3O4–PLA nanoparticles for potential applications in both the material technology and biomedical fields.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,