Article ID Journal Published Year Pages File Type
1803292 Journal of Magnetism and Magnetic Materials 2009 4 Pages PDF
Abstract
The structures and magnetic properties of Fe4/Cun (n=2, 4) superlattices have been investigated by the first-principles pseudopotential plane-wave method based on spin density approximation. Compared with the ideal fcc-Cu bulk structure, for the optimized Fe4/Cu2 model, obvious contraction of interlayer distances occurs on the interior Fe layers, whereas the interlayer distances of Fe layers in Fe4/Cu4 are expanded. The anti-parallel alignment magnetic moment and negative polarization of the interior Fe layer have been found in the Fe4/Cu2 model. This can be explained in terms of the magnetic-volume effect, and the moment of anti-parallel alignment attributes to the contracted interlayer distances between the interior Fe layers. The MR ratio has also been evaluated by means of the two-current model. The MR ratio of the Fe4/Cu2 model (4.89%) is much small than that of the Fe4/Cu4 one (23.65%).
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,