Article ID Journal Published Year Pages File Type
1803415 Journal of Magnetism and Magnetic Materials 2009 5 Pages PDF
Abstract

The demagnetization process for an exchange-coupled double-nanolayer system with perpendicular easy axes has been investigated within a micromagnetic model. The nucleation field, coercivity and angular distribution of the magnetization, have been obtained as functions of the thickness L of the misaligned layer, the layer with the easy axis perpendicular to the applied field. It is found that the coercivity is identical to the nucleation field only for very small L. For larger L (larger than a quarter of its Bloch wall width), the nucleation field is negative while the coercivity saturates at 0.414HK, where HK is the anisotropy field. Thus for larger L, the coercivity mechanism is self-pinning rather than pure nucleation. This self-pinning has both attributes of traditional nucleation and pinning.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,