Article ID Journal Published Year Pages File Type
1803594 Journal of Magnetism and Magnetic Materials 2009 7 Pages PDF
Abstract

We present a review of theoretical and experimental results for tunable microwave band-stop filters, band-pass filters, phase shifters, and a signal to noise enhancer, all based on a microstrip geometry and using a variety of magnetic thin films and layered structures. These devices are compatible in size and growth process with on-chip high-frequency electronics. For devices based on metallic ferromagnetic films of Fe and Permalloy, the operational frequency ranges from 5 to 35 GHz for external fields below 5 kOe. For the band-stop filters, we observed power attenuation up to ∼100 dB/cm, and an insertion loss on the order of ∼2–3 dB, for both Permalloy and Fe-based structures. We also explore the use of thin films of hexagonal ferrites, antiferromagnets, and liquid crystals, and show that useful devices can be constructed with films less than one 1 μm in thickness.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , , , , ,