Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1803844 | Journal of Magnetism and Magnetic Materials | 2008 | 6 Pages |
The effect of structure on the magnetism of iron monolayers (MLs) on molybdenum is investigated using the density functional theory (DFT) with norm conserving pseudopotentials and a plane wave basis, under the local spin density approximation (LSDA). Relaxation of 5 and 7 ML of Mo resulted in a contraction of 11.3% and 11.7%, respectively, for the top Mo–Mo interlayer spacing in close agreement with experimental results. In the case of one Fe overlayer, the top Fe–Mo interlayer spacing contracted by 15.8% for a ferromagnetic (FM) p(1×1) and 20.6% for an antiferromagnetic (AF) c(2×2) configuration. The magnetic moment of the surface (Fe) layer is enhanced from its theoretically calculated bulk value. Total energy calculations show that the AF c(2×2) is the stable state with a magnetic moment of 2.53 μB. The surface Fe atoms are AF coupled with each other and with the Mo layers below, showing layered AF coupling. The present study demonstrates the reliability of the pseudopotential approach under LSDA with core corrections included to the calculation of magnetic properties of combined transition metal systems.