Article ID Journal Published Year Pages File Type
1803938 Journal of Magnetism and Magnetic Materials 2007 9 Pages PDF
Abstract

Magnetic properties of zero field cooled (ZFC) and field cooled (FC) sample of (Mn,Fe)2O3−t nanograins have been investigated by magnetometry (up to 70 kOe) and Mössbauer spectroscopy (up to 60 kOe) in the temperature interval 4.2–300 K. Large horizontal (up to 0.8 kOe) and vertical (up to 80%) shifts of the magnetization hysteresis loops are observed in the FC regime. The obtained results are discussed in terms of exchange interaction between an antiferromagnetic core and a spin-glass-like state of the nanograins boundaries. It is shown that hysteresis loop shifts (horizontal and vertical) depend on the field cooling magnitude, an effect that can be understood by the change of the boundary magnetic structure induced by the external magnetic field. The vertical magnetization shift is described by a phenomenological model, which takes into account the magnetic interaction between the spin-glass like boundary spins and the applied field.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,