Article ID Journal Published Year Pages File Type
1804287 Journal of Magnetism and Magnetic Materials 2007 9 Pages PDF
Abstract

High-energy high-flux synchrotron X-rays have been used to study the spontaneous magnetostriction of R2Fe17 (R=Y, Nd, Gd, Tb, Er) and their carbides in the temperature range 10–1100 K. Addition of interstitial carbon greatly increases both the Curie temperatures (TC) and the spontaneous magnetostrain of the compounds, while reduces the anisotropy of the magnetostrain by expanding the distances between rare-earth and neighboring Fe sites. The increase of TC with carbon is due to the increased spatial separation of the Fe hexagon layers. On the basal plane, the Fe hexagons are squeezed and the contribution of Fe sublattice to spontaneous magnetostriction is attenuated, while that of rare-earth sublattice is enhanced. The average bond magnetostrain around Fe sites are in linear relation with their hyperfine field intensities.

Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,