Article ID Journal Published Year Pages File Type
1804654 Journal of Magnetism and Magnetic Materials 2007 6 Pages PDF
Abstract
Structure and magnetization of CoZrNb amorphous films prepared by DC magnetron sputtering have been studied as a function of film thickness (t), from 35 to 840 nm. Using comprehensive characterization, we show that the CoZrNb amorphous films possess a single phase and no nanocrystalline can be detected. The magnetic measurements indicate that the magnetization reversal of CoZrNb films is strongly dependent on t. That is, the coercivity is abruptly reduced to be lower than 4 Oe with t increasing from 35 to 105 nm, and then gradually decreases to ∼0.2 Oe as t increases. This coercivity transition versus t is accompanied by the strong magnetization reversal when t is larger than 105 nm. The results reveal that CoZrNb amorphous films with comparatively large film thickness (>100 nm) are suitable for sensors and anti-faked materials.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,